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A B S T R A C T   

In this paper, we have proposed a robust Printed Circuit Board (PCB) classification system based on computer 
vision and deep learning to assist sorting e-waste for recycling. We have used a public PCB dataset acquired using 
a conveyor belt, as well as a locally developed PCB dataset that represents challenging practical conditions such 
as varying lighting, orientation, distance from camera, cast shadows, view-points and different cameras/reso-
lutions. A pre-trained EfficientNet-B3 deep learning model is utilized and retrained for use with our data in PCB 
classification context. Deep nets are designed for closed set recognition tasks capable of classifying only the 
images they have been trained for. We have extended the closed set nature of deep nets for use in our open set 
classification tasks which require identifying unknown PCBs apart from classifying known PCBs. We have ach-
ieved an open set average accuracy of 92.4% which is state of the art given the complexities in the datasets we 
worked with.   

1. Introduction 

With the advancements in technology, human lives are becoming 
increasingly reliant on electronic products such as computers, cell 
phones etc. Printed Circuit Boards (PCBs) which are composed of several 
Integrated Circuits (ICs) interconnected with each other through copper 
traces, lie at the heart of all these equipment. It is estimated that the 
electronic waste amounts to nearly 50 million tons per year (Hadi et al., 
2015) and the trend seems to be increasing by 7–10 percent each year. 
Some researchers have indicated that in the US alone, 500 million 
computers were discarded between 1997 and 2007 and over 1.2 billion 
phones are produced in a year worldwide (Kiddee et al., 2013). Such 
huge quantities of electronic waste require highly efficient measures for 
waste management such that the environment is not severely affected. 

To this end, in 2012 the European Union documented special di-
rectives for safe disposal and handling of waste electronics (WEEE 
2012), and a special project called ReClaim was initiated to undertake 
research in finding efficient ways to recycle electronic waste (EU 2021). 
The reviews undertaken in PCB recycling (Muniyandi et al., 2012; Li 
et al., 2004) indicate that current recycling practices only allow recovery 
of 28% of the dominated materials and the remaining slug is either 
incarcerated or land filled. This is due to the fact that PCBs are highly 

heterogeneous in composition and it is very difficult to estimate the 
material composition of the PCB, which if known, would allow appli-
cation of recycling processes appropriate to that composition. 

The reason why precious metals could not be recovered is that e- 
waste which includes all sorts of electronics is not sorted and resultantly 
the proportion of precious metals compared to overall weight of the e- 
waste becomes so low that current industrial processes cannot recover 
them (Hadi et al., 2015). To enable recovery of precious metals, the 
e-waste containing higher amounts of these metals need to be identified 
and segregated. Manual sorting is tedious and not an efficient approach 
as the process is time consuming and costly. Therefore, we have pro-
posed a vision-based method capable of identifying PCB models in waste 
streams thus enabling efficient recycling. If the model of a PCB is known, 
its precious metal composition from a database can accordingly be 
looked up. 

Following are the major contributions of this paper:  

• We have proposed a deep learning based image classification method 
for PCB recycling process with higher performance.  

• Inherently, Deep Convolutional Neural Networks (DCNNs) are 
designed for use in close-set classification context in which the query 
image must belong to one of the classes it has been trained for. We 
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have extended and evaluated the closed set nature of deep nets to 
enable use of DCNNs in open-set classification tasks (i.e. classifying 
unknown images apart from known/ trained classes).  

• The proposed approach provides a pilot study using public as well as 
locally developed PCBs dataset. The local dataset represents various 
complexities such as varying lighting, orientation, distance from 
camera, cast shadows, view-points and different cameras/ 
resolutions. 

2. Background research 

There are a number of works exploring the use of automated methods 
for electronic waste management in general. Weinert et al. (2017) pro-
posed an automated system for the classification of electronic waste 
using deep learning. Several researchers have implemented computer 
vision techniques specifically on PCB images. One of the application 
areas is automated optical inspection of PCBs in which methods to locate 
manufacturing related defects are identified. Putera and Ibrahim (2010) 
used mathematical morphology and image processing tools to identify 
certain types of manufacturing defects to be used in automated inspec-
tion of PCBs in assembly lines. However, the application of computer 
vision techniques on PCBs for classification in a recycling context has 
emerged only recently. There have been two approaches to this problem. 
The first is aimed at identification of components such that recycling on 
component level is possible, and the second approach is related to PCB 
level identification where specified PCBs can be located in the waste 
stream. 

2.1. Component level identification 

Li et al. (2013) proposed an automatic PCB recycling pipeline which 
leverages several sensors including lasers, cameras and spectrometers 
for PCB material composition analysis. In Li et al. (2013) the authors 
have approached segmentation of PCB components using borders prin-
ted on PCB substrate around components, however this method may not 
apply to a wide range of PCBs as not all PCBs are designed with the said 
bordering features. As an extension of their work, Li et al. (2016) pro-
posed a technique to localize components on a PCB by clustering regions 
with similar set of features such as pixel intensity/ color information, 
texture and edges which were then used for background removal. In 
another relevant work Li et al. (2014), the authors attempted to read IC 
labels using Optical Character Recognition (OCR) and compared 
different OCR engine performance. 

Overall, component level identification research is used for fine 
grained analysis aiming component level recycling and as a byproduct, 
the component composition can be used to identify the PCB as well. 
However, owing to large variation in PCB structures, finding a generic 
and robust solution which accomplishes component identification in 
practical scenarios is still an open research problem. 

2.2. Complete PCB identification 

Another approach to facilitate recycling of PCBs was used by Pra-
merdorfer and Kampel (2015a) in which the authors proposed a method 
using local features of the PCB images augmented with homography 
verification to identify PCBs in a waste stream without having the need 
to extract component level details. Local features are a well-known 
technique used in object recognition. One of such effective feature 
extraction method known as Scale Invariant Feature Transform (SIFT) 
has been proposed by David Lowe (Lowe, 1999). The authors Pra-
merdorfer and Kampel (2015a) have compared performance of various 
local feature matching methods such as SIFT, SURF, BRISK, FREAK and 
ORB. Accordingly, they have reported accuracy of up to 100% on a 
controlled pose and illumination dataset. The local features based 
method in Pramerdorfer and Kampel (2015a) has it’s own strengths, 
nevertheless it is considered that following few limitations, if catered 

for, will be very helpful to advance research in this sub-domain :  

• Little or no change of perspective is allowed between the query and 
database image. A study by Mikolajczyk et. al focusing on the per-
formance of SIFT (Mikolajczyk and Schmid, 2005) shows that with 
50◦ variation in perspective between query and database image, the 
recall rate degrades to 24% and precision to 56%. Therefore, use of 
local features alone are not effective in datasets having perspective 
and illumination variations. An analysis of the dataset used by au-
thors Pramerdorfer and Kampel (2015b) reveal that test cases in 
which the test PCB is on the extremities of conveyor belt (introducing 
perspective distortions) have not been studied in which case the 
accuracy of the system may possibly reduce. 

• The method at Pramerdorfer and Kampel (2015a) requires heuristi-
cally calculated threshold values which although works well for the 
authors’ dataset Pramerdorfer and Kampel (2015b), though it may or 
may not be optimal for other scenarios.  

• The authors (Pramerdorfer and Kampel, 2015a) have proposed 
controlled lighting conditions using polarized and diffused light 
along with a polarization filter. Although such requirements are 
practicable and suffice for the scope defined by the authors, however 
it may be more practicle to introduce methods which are invariant to 
lighting conditions.  

• The method used in Pramerdorfer and Kampel, (2015a) is focused 
towards identifying PCBs which have exactly the same appearance. 
Thus, instead of a specific PCB, if it is desired to identify a generic 
class of PCBs such as Motherboard PCBs, Random Access Memory 
PCBs etc. which have a certain level of similarity in appearance but 
are not exactly same, then some modified and advanced solutions 
will be required. 

In (Rehman et al., 2019), the authors propose a system that performs 
PCB identification followed by defect detection with the goal of auto-
mating the process of PCB inspection. They have used SURF and ORB 
features to perform identification of PCBs. Once the PCB model is 
identified, the PCB image is transformed to match the reference image 
and the defect detection process is performed. This approach has similiar 
limitations as (Pramerdorfer and Kampel, 2015a), as it also utilizes local 
features. 

3. Objectives and datasets 

The objective of this paper is to propose a robust and generic solution 
for PCB identification in terms of the following:  

• Invariant to reasonable changes in perspective/viewpoint as well as 
rotation. Thus, the test image does not have to be in the same 
perspective/plane as that of the reference (trained) image. This al-
lows the freedom to use the training data from any source (such as 
from the internet, a facility or a customer etc.) and not necessarily 
obtained from the same environment in which the testing is to be 
performed. Moreover, this feature would allow different recycling 
facilities to share datasets with each other, thereby allowing 
interoperability.  

• Invariant to indoor and semi-outdoor conditions such that special 
polarized filters/ diffusers are no longer required. Ordinary lighting 
sources may suffice.  

• Invariant to cast shadows in PCBs which are not very flat (e.g. PCBs 
fitted with heat sinks, connectors or unremoved parts of casing etc.).  

• Invariant to motion blur. 

A PCB dataset encompassing above mentioned variations was not 
available on the internet. Therefore, a dataset was locally developed 
consisting of 67 PCB classes under varying lighting conditions, camera 
viewing angles, blur effects, rotation and scale (i.e. PCB distance from 
camera). Each class in our datasets consists of a unique PCB model. By 
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identifying the model of a PCB, we can obtain its composition from a 
database. In the recycling process, this data can be used to sort out PCBs 
that contain precious metals, so that they can be recovered. Samples 

from our dataset are shwn in Fig. 1 representing the above mentioned 
varying conditions. 

In addition to our own dataset, we have also used the PCB DSLR 
dataset (Pramerdorfer and Kampel, 2015b), a public dataset consisting 
of 165 classes of PCBs acquired using a conveyor belt. A number of 
samples from this dataset are displayed in Fig. 2. The information about 
the used datasets is summarized in Table 1. 

We have evaluated the performance of the chosen network on both 
the datasets separately as well as with a combined dataset with 232 
classes of PCBs. We have performed two experiments i.e., closed set 
classification and open set classification. Closed set classification can be 

Fig. 1. Sample images from locally developed dataset. Each row represents varying pose and illumination variation for a class of PCB.  

Fig. 2. Samples images from the PCB-DSLR dataset (Pramerdorfer and Kampel, 2015b).  

Table 1 
Datasets used for experimentation.  

Model Classes Train set Validation set Test set 

Our Dataset 67 2222 684 361 
PCB DSLR Dataset 165 418 165 165 
Combined Dataset 232 2640 849 526  
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described as the ability of a classifier to label images known to belong to 
one of the classes it has been trained for, whereas in open set classifi-
cation the classifier must also be able to distinguish the unknown images 
it has not seen before. For open set classification, we have added a 
special class to the combined dataset which contains random PCB im-
ages obtained from the internet using Google image search. 

In order to compare the accuracy with the method proposed in 
(Pramerdorfer and Kampel, 2015a), we have applied their method on 
our own dataset. We used a similar algorithm available at OpenCV 

(Abid, 2021) and modified it as per (Pramerdorfer and Kampel, 2015a) 
using ORB features which gave a closed set accuracy of 100% on the 
dataset used by Pramerdorfer and Kampel (2015b) and only 60.9% on 
our data set. Therefore, in order to increase the classification accuracy 
on our data set we have approached the problem by using 
state-of-the-art Deep Convolutional Neural Networks. 

4. Background - Deep Convolutional neural networks 

Artificial Neural Networks (ANNs) are machine learning models 
which are inspired from the perceptron connectivity inside a brain. Deep 
Convolutional Neural Networks (Deep CNNs) are an extension of ANNs, 
except that they are deeper (typically tens of hidden layers) and instead 
of fully connected graphical structure, the neurons may be connected in 
convolutional layers. This allows performing filter operations on input 
images, where each filter has learnable weights acting as kernels. In 
Deep CNNs the neuron banks (filters) are three dimensional (RGB filters) 
i.e. have height, width and depth. Moreover, unlike fully connected 
architectures, the neuron filters are connected to only a small subset of 
the previous layer therefore narrowing the receptive field. To cover the 
entire spatial space, convolution shift operation is performed. A 

Table 2 
EfficientNet Models.  

Model ImageNet Top-1 Accuracy Parameters 

EfficientNet-B0 77.1% 5.3M 
EfficientNet-B1 79.1% 7.8M 
EfficientNet-B2 80.1% 9.2M 
EfficientNet-B3 81.6% 12M 
EfficientNet-B4 82.9% 19M 
EfficientNet-B5 83.6% 30M 
EfficientNet-B6 84% 43M 
EfficientNet-B7 84.3% 66M  

Fig. 3. Transfer learning and finetuning validation accuracy on (a) Our dataset; (b) PCB-DSLR dataset; (c) Combined dataset.  
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convolution layer can have many filter kernels and the output of all 
filters in a layer are concatenated horizontally to form a 3D cube. CNNs 
have been around for many decades but their power was underestimated 
until back propagation was used for training neural networks in 1998 
when LeCun et al. (1998) used CNN (LeNet 5) for document recognition. 
However, the question if this gradient based back propagation technique 
would scale up to larger CNNs lingered on until in 2012 when a deep 
CNN was used to classify ImageNet data set (Krizhevsky et al., 2012) 
with a top-5 error rate of 16.4% which was remarkable. Later, other 
variations were developed with several improvements and as of today, 
deep CNNs have achieved a top 5 classification error rate as low as 1.2%. 

A brief overview of the EfficientNet Model and Transfer Learning 
methodology, used in this work for the PCB classification problem, is 
given in the following paragraphs. 

4.1. EfficientNet 

Tan et al. from Google inc. have proposed a novel model scaling 
method that improves performance by scaling in all dimensions of scale, 
width, depth, and resolution using a compound coefficient. In addition 
to demonstrating the effectiveness of this scaling method on ResNet and 
MobileNet, the authors have also developed a new family of Deep CNN 
architecture known as EfficientNet (Tan and Le, 2019) which achieved a 
top-1 accuracy of 84.3% on ImageNet dataset (Krizhevsky et al., 2012) 
at the time of its publication in 2019. The related details are provided in 
Table 2. 

4.2. Transfer learning 

Training Deep CNNs is a challenging task. The foremost problem is 
the amount of data required to train a deep CNN to achieve a desired 
level of classification accuracy. Though there is no one answer to the size 
of dataset required to attain a required classification accuracy in a 
specific application. Sharif Razavian et al. (2014) reported that a deep 
CNN can be used for classification of any arbitrary dataset by using 
feature extraction layers pre-trained on any other (large) dataset. In this 
way, the convolution layers which have attained the capability of 
extracting powerful features can be fixed while the last few layers can be 
re-trained as per the problem at hand. This methodology has since been 
widely used in deep learning based applications and is commonly 
referred to as Transfer Learning (Gao and Mosalam, 2018; Shin et al., 
2016; Han et al., 2018). In our case, we had a combined dataset of 
~4015 images with 232 classes. Similarly, we have used transfer 
learning considering the broader spectrum and related environmental 
and operational dynamics involved in the PCB recycling facilities. 

5. Closed set PCB classification using efficientnet-b3 inception 
model 

We leverage transfer learning for our application, using a pretrained 
EfficientNet-B3 model trained on ImageNet. We have chosen the 
EfficientNet-B3 model for a decent tradeoff between accuracy and 
inference speed. We first froze the pretrained model, removed the top 
layer, and then used it as a feature extractor to train a classifier for 80 
epochs. This is followed by unfreezing the top 20 layers and then fine- 
tuning the network for 50 epochs. We have repeated this process for 
both the datasets separately as well as on the combined dataset. The 
experiments were performed using the Tensorflow Keras framework 
(Tensor Flow 2015). 

Some of the important parameters set for training are as follows:  

• Data augmentation: Random rotation, random flip  
• Batch Size: 32  
• Learning rate (Transfer learning): 1e-2  
• Number of epochs (Transfer learning): 80  
• Learning rate (Fine-tuning): 1e-4  

• Number of epochs (Fine-tuning): 80 

After 80 epochs of transfer learning, we unfreeze the top 20 layers 
and fine tune the network for another 80 epochs. This increases the 
validation accuracy for all three datasets. The training/validation ac-
curacies for training are shown in Fig. 3. 

The accuracies obtained after both stages of training on all three 
datasets are summarized in Table 3. 

We have also evaluated the comparative performance of EfficientNet 
B2, B3 and B4. The EfficientNetB4 model produced the best validation 
and test accuracy scores, outperforming EfficientNetB3 and Effi-
cientNetB2. The results obtained are shown in Table 4. 

6. Open set classification experiments 

The above-mentioned setup was aimed at ascertaining the closed set 
recognition performance. However, in real world classification such as 
in our case, the classifier must also be able to distinguish the unknown 
images it has not seen before. The test accuracy achieved on combined 
dataset in closed set classification sets the benchmark (in our case 
95.81%) which cannot be exceeded in open set classification. Using 
Deep CNNs for open set classification is a matter of current debate and 
several authors have proposed methods to recognize unknown classes 
(Bodesheim et al., 2015; Da et al., 2014). In Scheirer et al. (2014) the 
author proposed using Weibull-Calibrated Support Vector Machine 
which seemed to work well compared to other classification methods. In 
Bendale and Boult (2016) the authors proposed a technique to adapt 
Deep Nets for open set recognition by placing an additional layer called 
Open Max. This layer took input from the layer before softmax and used 
these scores to identify unknown images. Based on these ideas, we have 
experimented and compared four different methods on the combined 
dataset to achieve open set recognition as described below. 

6.1. Training CNN for negative class 

This technique is based on addition of a Negative Class (we labelled 
as NAN) in closed set training of the CNN. We took random images of 
PCBs not part of any other class being trained and included a NAN class 
in the training data set. The intuition was that if we train a CNN for a 
separate class with different images not belonging to any other class, the 
final layer before softmax will output nearly uniform distributions of 
scores during training with no resembling patterns and may remain 
confused. Taking leverage of this confusion it might be possible for this 
neuron to learn what the test image of an unknown PCB will output. A 
block diagram depicting the proposed architecture is shown in Fig. 4. 

The model was retrained using the combined dataset as described in 
the previous section (closed set training) except an additional Negative 
Class was added. The retraining successfully converged, and a validation 
set accuracy of 98.72% was achieved as shown in Fig. 5. The final test 
stats using a test set consisting of 544 images (i.e. 526 + Negative class) 

Table 3 
Validation and test accuracies obtained on training EfficientNet-B3.  

Dataset Validation Accuracy Test Accuracy 

Our Dataset 99.85% 100% 
PCB DSLR Dataset 94.37% 90.30% 
Combined Dataset 98.19% 95.81%  

Table 4 
Validation and test accuracies obtained on training EfficientNet-B3.  

Model Train Accuracy Validation Accuracy Test Accuracy 

EfficientNetB2 99.31% 97.95% 94.29% 
EfficientNetB3 99.65% 98.19% 95.81% 
EfficientNetB4 99.69% 99.03% 98.09%  
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achieved an open set average accuracy of 92.4% as shown in Column 1 
of Table 5. 

One important consideration using this method is that the Negative 
Class should not only include a variety of PCB images but also a variety 
of backgrounds. In our case, the Negative Class was composed of 
approximately 55% images taken in a background similar to known 
classes of our own dataset, whereas 45% images were from other 
backgrounds. Although we have only tested one composition of Nega-
tive class, but we expect the accuracy (especially the True Negative rate) 
to slightly vary as this composition is changed. 

6.2. Adding auxiliary classifier 

The other approach that we have experimented involves training the 
CNN for closed set recognition and augment it with an additional binary 
classifier on top of the CNN, which separates known and unknown 
classes. During classification, if the auxiliary classifier outputs ’un-
known/ Negative class’ then it is assigned as such and if known class is 
ascertained, then the class with maximum probability output from Deep 
CNN is assigned. The overall operation is depicted in Fig. 6. Since the 
task of auxiliary classifier is binary classification, a correct merit of ac-
curacy would entail equal test cases of both classes. However, since we 
have disproportionate positive and negative examples in the test set, we 
have averaged the accuracy as follows: 

Accuracy = 0.5 ∗ TP
TP + FN

+ 0.5 ∗ TN
TN + FP 

Where TP = True Positives, FN = False Negatives, TN = True Neg-
atives and FP = False Positives. 

The three different classification techniques we have experimented 
using auxiliary classifier are described below: 

6.2.1. Method 2: thresholding probability 
A trained CNN outputs the probabilities with which a test image 

matches with the trained classes. The class with the highest probability 
value is selected as the most probable match and the value of probability 
Pmax indicates the confidence of classification. We have first experi-
mented thresholding Pmax value such that if Pmax exceeded certain 
threshold, we considered the top choice as output label otherwise ’No 
Match’ label was assigned. The optimal threshold value was ascertained 
from the validation set (used in Deep CNN re-training) using accuracy 
curves as shown in Fig. 7(a) and validated using Receiver Operating 
Characteristics (ROC) curve Fig. 7(b) which shows that the maximum 
accuracy of 94.15% is achieved at 0.94 threshold value. We have applied 
this threshold on the test set and the final test accuracy of 78.96% was 
achieved. The performance statistics are shown in Column 2 of Table 5. 

6.2.2. Method 3: thresholding probability ratios 
While highest class probability value is an absolute term, the ratio 

Rp = Pmax/Pmax−1 between highest class probability Pmax and the second 
highest class probability Pmax−1 contains more information such as the 
relative distance which will be high for confident decisions and low 
otherwise. As an example, suppose that for a given test image, the Deep 
CNN assigns highest probability (say 0.49) to the true class, but it is less 
than the set threshold of 0.5 and is rejected. Even in such a case, if 
Pmax−1 is very low (say 0.05) compared to Pmax, one can still infer that 
the class indicated by Pmax is the correct class. We have therefore studied 
the system accuracy by setting the auxiliary classifier to threshold Rp 
and the results are shown in Fig. 8. The maximum training accuracy of 
94.19% was achieved (using the same data used in Method 2) at Rp = 93. 

Fig. 4. Deep CNN with a negative class.  

Fig. 5. Transfer learning and finetuning validation accuracy for open set 
classification task. 

Table 5 
Performance Stats Summary of Open Set Classification.  

Performance 
measure 

CNN with 
NAN class 

Thresholding at 
Pmax 

Thresholding 
at Rp 

SVM 

Avg. Accuracy 92.4 78.96 87.22 80.50 
TP Rate / Recall 

/ Sens 
96 91.3 85.6 88.8 

FP Rate 11.1 33.3 11.1 27.8 
TN Rate 88.9 66.7 88.9 72.2 
FN Rate 4 8.7 14.4 11.2 
Precision 99.6 98.8 99.6 98.9  
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Fig. 6. Overall system operation with auxiliary classifier.  

Fig. 7. Auxiliary Classification using threshold at Max Probability (a) Performance curves with varying threshold during training and testing (b) ROC Curve: training 
and testing. 

Fig. 8. Auxiliary Classification using threshold at Probability ratio (a) Performance curves with varying threshold during training and testing (b) ROC Curve: training 
and testing. 
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The test accuracy (on the test set) was 87.22% as shown in Column 3 of 
Table 5 which is significantly higher compared to the previous methods. 

6.2.3. Method 4: SVM classifier 
The final approach was to leverage on both the above parameters i.e. 

Pmax and Rp and train a classifier in 2-dimensional feature space. We 
have opted for Support Vector Machine (SVM) for this purpose. It may 
be noted that the ratio Rp = Pmax/Pmax−1 has the tendency to attain large 
values as Pmax−1 to 0. Therefore we have converted Rp to log scale and 
restricted the maximum value (C) it can attain by using the relation Rp 
= Log[min(Pmax /Pmax−1,C)] with (C) arbitrarily set to 5580. Fig. 9 shows 
a plot of feature space where it can be noticed that the data is not 
completely separable. This method yielded an accuracy of 80.50% on 
the test set. The performance stats of this method are given in Column 4 
of Table 5. 

6.3. Open set classification summary 

The results of above-mentioned methods are summarized in Table 5. 
Training Deep CNN for a negative class (Method 1) achieved highest 
accuracy, however the TN rate contributes lesser and TP contributes 
higher to the overall accuracy. In a PCB recycling facility this would 
mean that most of the desired PCBs could be identified at the cost of 
slight increase in the number of unwanted PCBs. Thresholding proba-
bility ratio (method 3) resulted in the same TN rate, but lower average 
accuracy. 

7. Conclusion and future directions 

In this paper, we have proposed a robust PCB classification system 
based on Deep Convolutional Neural Networks to assist sorting e-waste 
for recycling. We have presented different ways to use Deep CNNs for 
PCB classification in an open set context and achieved an accuracy of 
92.4% for open set classification, which is state of the art given the 
complications in the dataset we have worked with. The proposed PCB 
classification system can be adapted and deployed in recycling facilities 
to sort PCBs for efficient recycling of precious metals, reducing the 
amount that is incarcerated or landfilled. Our method for PCB classifi-
cation is implementable in a practical environment. However, the only 
advantage that local feature matching techniques have over our method 
is that only one reference image is required for training whereas in our 
case, approximately 30 different reference images per class are required 

so as to train Deep CNN without overfitting. On the brighter side ar-
ranging 30 images may not be very difficult since there are no re-
strictions on background, lighting, camera, orientation, perspective, 
distance from camera and should be possible in only a couple of minutes. 
Nevertheless, there are Deep CNNs that use even lesser number of 
reference images for training such as One-Shot Learning Siamese Net-
works (Koch et al., 2015) which can be experimented for this problem. 

The scope of this paper has been limited to identifying specific PCBs, 
however our method can be used to identify a generic class of PCBs (such 
as Motherboards, RAMs etc.) that has some level of similarity in 
appearance without having to train for every expected variation. Our 
initial findings confirm this claim though a more focused study can be 
carried out as a future work. Moreover, Deep CNNs can also be utilized 
for component level detection and identification and can generate more 
information from the PCB image allowing more efficient recycling. 
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